2008年國家公務(wù)員考試:面授輔導(dǎo)班 網(wǎng)絡(luò)輔導(dǎo)班
一、題型分類講解
等差數(shù)列及其變式
【例題1】2,5,8,()
A 10 B 11 C 12 D 13
【解答】從上題的前3個(gè)數(shù)字可以看出這是一個(gè)典型的等差數(shù)列,即后面的數(shù)字與前面數(shù)字之間的差等于一個(gè)常數(shù)。題中第二個(gè)數(shù)字為5,第一個(gè)數(shù)字為2,兩者的差為 3,由觀察得知第三個(gè)、第二個(gè)數(shù)字也滿足此規(guī)律,那么在此基礎(chǔ)上對(duì)未知的一項(xiàng)進(jìn)行推理,即8+3=11,第四項(xiàng)應(yīng)該是11,即答案為B。
【例題2】3,4,6,9,(),18
A 11 B 12 C 13 D 14
【解答】答案為C。這道題表面看起來沒有什么規(guī)律,但稍加改變處理,就成為一道非常容易的題目。順次將數(shù)列的后項(xiàng)與前項(xiàng)相減,得到的差構(gòu)成等差數(shù)列1,2, 3,4,5,……。顯然,括號(hào)內(nèi)的數(shù)字應(yīng)填13。在這種題中,雖然相鄰兩項(xiàng)之差不是一個(gè)常數(shù),但這些數(shù)字之間有著很明顯的規(guī)律性,可以把它們稱為等差數(shù)列的變式。
等比數(shù)列及其變式
【例題3】3,9,27,81()
A 243 B 342 C 433 D 135
【解答】答案為A。這也是一種最基本的排列方式,等比數(shù)列。其特點(diǎn)為相鄰兩個(gè)數(shù)字之間的商是一個(gè)常數(shù)。該題中后項(xiàng)與前項(xiàng)相除得數(shù)均為3,故括號(hào)內(nèi)的數(shù)字應(yīng)填243。
【例題4】8,8,12,24,60,()
A 90 B 120 C 180 D 240
【解答】答案為C。該題難度較大,可以視為等比數(shù)列的一個(gè)變形。題目中相鄰兩個(gè)數(shù)字之間后一項(xiàng)除以前一項(xiàng)得到的商并不是一個(gè)常數(shù),但它們是按照一定規(guī)律排列的;1,1.5,2,2.5,3,因此括號(hào)內(nèi)的數(shù)字應(yīng)為60×3=180。這種規(guī)律對(duì)于沒有類似實(shí)踐經(jīng)驗(yàn)的應(yīng)試者往往很難想到。我們?cè)谶@里作為例題專門加以強(qiáng)調(diào)。該題是1997年中央國家機(jī)關(guān)錄用大學(xué)畢業(yè)生考試的原題。
【例題5】8,14,26,50,()
A 76 B 98 C 100 D 104
【解答】答案為B。這也是一道等比數(shù)列的變式,前后兩項(xiàng)不是直接的比例關(guān)系,而是中間繞了一個(gè)彎,前一項(xiàng)的2倍減2之后得到后一項(xiàng)。故括號(hào)內(nèi)的數(shù)字應(yīng)為50×2-2=98。
等差與等比混合式
【例題6】5,4,10,8,15,16,(),()
A 20,18 B 18,32 C 20,32 D 18,32
【解答】此題是一道典型的等差、等比數(shù)列的混合題。其中奇數(shù)項(xiàng)是以5為首項(xiàng)、等差為5的等差數(shù)列,偶數(shù)項(xiàng)是以4為首項(xiàng),等比為2的等比數(shù)列。這樣一來答案就可以容易得知是C這種體型的靈活度高,可以隨意地拆加或重新組合,可以說是在等比和等差數(shù)列當(dāng)中的最有難度的一種題型。
求和相加式與求差相減式
【例題7】34,35,69,104,()
A 138 B 139 C 173 D 179
【解答】答案為C。觀察數(shù)字的前三項(xiàng),發(fā)現(xiàn)有這樣一個(gè)規(guī)律,第一項(xiàng)與第二項(xiàng)相加等于第三項(xiàng),34+35=69,這種假想的規(guī)律迅速在下一個(gè)數(shù)字中進(jìn)行檢驗(yàn),35+69=104,得到了驗(yàn)證,說明假設(shè)的規(guī)律正確,以此規(guī)律得到該題的正確答案為173。在數(shù)字推理測(cè)驗(yàn)中,前兩項(xiàng)或幾項(xiàng)的和等于后一項(xiàng)是數(shù)字排列的又一重要規(guī)律。
【例題8】5,3,2,1,1,()
A -3 B -2 C 0 D 2
【解答】這題與上題同屬一個(gè)類型,有點(diǎn)不同的是上題是相加形式的,而這題屬于相減形式,即第一項(xiàng)5與第二項(xiàng)3的差等于第三項(xiàng)2,第四項(xiàng)又是第二項(xiàng)和第三項(xiàng)之差……所以,第四項(xiàng)和第五項(xiàng)之差就是未知項(xiàng),即1-1=0,故答案為C。
更多信息請(qǐng)?jiān)L問:考試吧公務(wù)員欄目
希望與其他公務(wù)員考生進(jìn)行交流?點(diǎn)擊進(jìn)入公務(wù)員論壇>>>
國家 | 北京 | 天津 | 上海 | 江蘇 |
安徽 | 浙江 | 山東 | 江西 | 福建 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內(nèi)蒙古 |