數(shù)位數(shù)字和為c+a+b,偶數(shù)位數(shù)字和為b+c+a,它們的差恰為零,象這樣由三位數(shù)連寫兩次組成的六位數(shù)是否能被7整除呢?
如186186被7試除后商為26598,余數(shù)為零,即7|186186。能否不做186186÷7,而有較簡(jiǎn)單的判斷辦法呢?
由于186186=186000+186=186×1000+186=186×1001而1001=7×11×13,所以186186一定能被7整除。
這就啟發(fā)我們考慮,由于7×11×13=1001,故若一個(gè)數(shù)被1001整除,則這個(gè)數(shù)必被7整除,也被11和13整除。
或?qū)⒁粋(gè)數(shù)分為兩部分的和或差,如果其中一部分為1001的倍數(shù),另一部分為7(11或13)的倍數(shù),那么原數(shù)也一定是7(11或13)的倍數(shù)。
如判斷2839704是否是7的倍數(shù)?
由于2839704=2839000+704=2839×1000+704=2839×1001-2839+704=2839×1001-(2839-704)
∵2839-704=2135是7的倍數(shù),所以2839704也是7的倍數(shù);2135不是11(13)的倍數(shù),所以2839704也不是11(13)的倍數(shù)。
實(shí)際上,對(duì)于283904這樣一個(gè)七位數(shù),要判斷它是否為7(11或13)的倍數(shù),只需將它分為2839和704兩個(gè)數(shù),看它們的差是否被7(11或13)整除即可。
又如判斷42952是否被13整除,可將42952分為42和952兩個(gè)數(shù),只要看952-42=910是否被13整除即可。由于910=13×70,所以13|910,
8.一個(gè)三位以上的整數(shù)能否被7(11或13)整除,只須看這個(gè)數(shù)的末三位數(shù)字表示的三位數(shù)與末三位數(shù)字以前的數(shù)字所組成的數(shù)的差(以大減小)能否被7(11或13)整除。
另法:將一個(gè)多位數(shù)從后往前三位一組進(jìn)行分段。奇數(shù)段各三位數(shù)之和與偶數(shù)段各三位數(shù)之和的差若被7(11或13)整除,則原多位數(shù)也被7(11或13)整除。
如3546725可分為3,546,725三段。奇數(shù)段的和為725+3=728,偶數(shù)段為546,二者的差為728-546=182=7×26=7×2×13