6.各個數(shù)位上數(shù)字之和能被3(9)整除的整數(shù)必能被3(9)整除。
如478323是否能被3(9)整除?
由于478323=4×100000+7×10000+8×1000+3×100+2×10+3
=4×(99999+1)+7(9999+1)+8×(999+1)+3×(99+1)+2×(9+1)+3 =(4×99999+7×9999+8×999+3×99+2×9)+(4+7+8+3+2+3)
前一括號里的各項都是3(9)的倍數(shù),因此,判斷478323是否能被3(9)整除,只要考察第二括號的各數(shù)之和(4+7+8+3+2+3)能否被3(9)整除。而第二括號內各數(shù)之和,恰好是原數(shù)478323各個數(shù)位上數(shù)字之和。
∵4+7+8+3+2+3=27是3(9)的倍數(shù),故知478323是3(9)的倍數(shù)。
在實際考察4+7+8+3+2+3是否被3(9)整除時,總可將3(9)的倍數(shù)劃掉不予考慮。
即考慮被3整除時,劃去7、2、3、3,只看4+8,考慮被9整除時,由于7+2=9,故可直接劃去7、2,只考慮4+8+3+3即可。
如考察9876543被9除時是否整除,可以只考察數(shù)字和(9+8+7+6+5+4+3)是否被9整除,還可劃去9、5+4、6+3,即只考察8
如問3是否整除9876543,則先可將9、6、3劃去,再考慮其他數(shù)位上數(shù)字之和。由于3|(8+7+5+4),故有3|9876543。
實際上,一個整數(shù)各個數(shù)位上數(shù)字之和被3(9)除所得的余數(shù),就是這個整數(shù)被3(9)除所得的余數(shù)。