數(shù)的整除的特征
我們已學過奇數(shù)與偶數(shù),我們正是以能否被2整除來區(qū)分偶數(shù)與奇數(shù)的。因此,有下面的結論:末位數(shù)字為0、2、4、6、8的整數(shù)都能被2整除。偶數(shù)總可表為2k,奇數(shù)總可表為2k+1(其中k為整數(shù))。
2.末位數(shù)字為零的整數(shù)必被10整除。這種數(shù)總可表為10k(其中k為整數(shù))。
3.末位數(shù)字為0或5的整數(shù)必被5整除,可表為5k(k為整數(shù))。
4.末兩位數(shù)字組成的兩位數(shù)能被4(25)整除的整數(shù)必被4(25)整除。
如1996=1900+96,因為100是4和25的倍數(shù),所以1900是4和25的倍數(shù),只要考察96是否4或25的倍數(shù)即可。
由于4|96能被25整除的整數(shù),末兩位數(shù)只可能是00、25、50、75。能被4整除的整數(shù),末兩位數(shù)只可能是00,04,08,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的數(shù)。
5.末三位數(shù)字組成的三位數(shù)能被8(125)整除的整數(shù)必能被8(125)整除。
由于1000=8×125,因此,1000的倍數(shù)當然也是8和125的倍數(shù)。
如判斷765432是否能被8整除。
因為765432=765000+432
顯然8|765000,故只要考察8是否整除432即可。由于432=8×54,即8|432,所以8|765432。
能被8整除的整數(shù),末三位只能是000,008,016,024,…984,992。
由于125×1=125,125×2=250,125×3=375;125×4=500,125×5=625;125×6=750;125×7=875;125×8=10000
故能被125整除的整數(shù),末三位數(shù)只能是000,125,250,375,500,625,750, 875。