首頁 考試吧論壇 Exam8視線 考試商城 網(wǎng)絡課程 模擬考試 考友錄 實用文檔 求職招聘 論文下載
2011中考 | 2011高考 | 2012考研 | 考研培訓 | 在職研 | 自學考試 | 成人高考 | 法律碩士 | MBA考試
MPA考試 | 中科院
四六級 | 職稱英語 | 商務英語 | 公共英語 | 托福 | 雅思 | 專四專八 | 口譯筆譯 | 博思 | GRE GMAT
新概念英語 | 成人英語三級 | 申碩英語 | 攻碩英語 | 職稱日語 | 日語學習 | 法語 | 德語 | 韓語
計算機等級考試 | 軟件水平考試 | 職稱計算機 | 微軟認證 | 思科認證 | Oracle認證 | Linux認證
華為認證 | Java認證
公務員 | 報關員 | 銀行從業(yè)資格 | 證券從業(yè)資格 | 期貨從業(yè)資格 | 司法考試 | 法律顧問 | 導游資格
報檢員 | 教師資格 | 社會工作者 | 外銷員 | 國際商務師 | 跟單員 | 單證員 | 物流師 | 價格鑒證師
人力資源 | 管理咨詢師考試 | 秘書資格 | 心理咨詢師考試 | 出版專業(yè)資格 | 廣告師職業(yè)水平
駕駛員 | 網(wǎng)絡編輯
衛(wèi)生資格 | 執(zhí)業(yè)醫(yī)師 | 執(zhí)業(yè)藥師 | 執(zhí)業(yè)護士
會計從業(yè)資格考試會計證) | 經(jīng)濟師 | 會計職稱 | 注冊會計師 | 審計師 | 注冊稅務師
注冊資產(chǎn)評估師 | 高級會計師 | ACCA | 統(tǒng)計師 | 精算師 | 理財規(guī)劃師 | 國際內(nèi)審師
一級建造師 | 二級建造師 | 造價工程師 | 造價員 | 咨詢工程師 | 監(jiān)理工程師 | 安全工程師
質量工程師 | 物業(yè)管理師 | 招標師 | 結構工程師 | 建筑師 | 房地產(chǎn)估價師 | 土地估價師 | 巖土師
設備監(jiān)理師 | 房地產(chǎn)經(jīng)紀人 | 投資項目管理師 | 土地登記代理人 | 環(huán)境影響評價師 | 環(huán)保工程師
城市規(guī)劃師 | 公路監(jiān)理師 | 公路造價師 | 安全評價師 | 電氣工程師 | 注冊測繪師 | 注冊計量師
繽紛校園 | 實用文檔 | 英語學習 | 作文大全 | 求職招聘 | 論文下載 | 訪談 | 游戲
您現(xiàn)在的位置: 考試吧(Exam8.com) > 資格類考試 > 公務員考試 > 行政能力 > 數(shù)量關系 > 國家 > 正文

2012國家公務員行測指導:最值問題的解題思路

最值問題在數(shù)學運算的各個專題中顯得與眾不同。因為它沒公式?jīng)]概念,不像行程問題之類需要記公式和概念。

  最值問題在數(shù)學運算的各個專題中顯得與眾不同。因為它沒公式?jīng)]概念,不像行程問題之類需要記公式和概念。但它卻是數(shù)學運算中較難的一個專題。很多考生對于最值問題不知道如何下手。

  既然最值問題沒有公式概念,因此解題思路就顯得格外重要了。好在最值問題的解題思路還是較為模式化的。下面我們來通過例題具體談談最值問題的解題思路。

  【例1】

  一次數(shù)學考試滿分為100分,某班前六名同學的平均分為95分,排名第六的同學得分為86分,假如每個人得分是互不相同的整數(shù),那么排名第三的同學最少得多少分?

  解析:最值問題最讓人費解的就是它的問題了。6個人的平均分是95,因此他們的總分是95x6=570。題目問:那么排名第三的同學最少得多少分。既然6個人的總分是個定值,而題目要求排名第三的同學得分盡量的少,因此就需要其他個人的得分盡量的多!即要第1名,第2名,第4名,第5名,第6名的得分都盡量的高。第1名得分盡量高當然就是得100分;第2名得分盡量高,但不能高過第一名,因此第2名得得分是99;第3名是題目所求的,設為x;第4名的得分也要盡量的高,但是再高也不能高過第3名,因此第4名得得分最多為x-1;第5名得得分也要盡量的高,但再高不能高過第4名,因此第5名的得分最多為x-2;第6名的得分題目已經(jīng)給出為86分。因此在排名第3的同學得分最少的情況是6個人得分分別為:100,99,x,x-1,x-2,86分。6個人的總分是570,因此100+99+x+(x-1)+(x-2)+86=570。解得x=96。選

  【例2】

  5人的體重之和是423斤,他們的體重都是整數(shù),并且各不相同,則體重量最輕的人,最重可能重

  A.80斤 B.82斤 C.84斤 D.86斤

  解析:5個人的體重之和是423斤,為一個定值。要求第5名的體重最重,即要其他4個人的體重盡量的輕。假設第5名得體重為x;第4名得體重要盡量的輕,但是再輕不能輕過第5名,因此第4名最少為x+1;第3名得體重要盡量的輕,但是再輕不能輕過第4名,因此第3名最少為x+2;第2名得體重要盡量的輕,但是再輕不能輕過第3名,因此第2名最少為x+3,;第1名得體重要盡量的輕,但是再輕不能輕過第2名,因此第1名最少為x+4。這樣,在第5名體重最重的情況即5個人的體重分別為:x+4,x+3,x+2,x+1,x。他們的體重之和為423,即(x+4)+(x+3)+(x+2)+(x+1)+x。解得x=82.6。但題目要求每個人的得分必須是整數(shù),因此這個82.6只是理論值。因此最多為82。選

  這2題基本就代表了最值問題第二類的解題思路,雖然最值問題很難,但由于它的解題思路是相對較為固定的,所以只要掌握了這種思路,解題也不會很難。最值問題的思路總結為:先考慮題目問的是某個人最多還是最少,如果要求最多則要其他人盡量的少。然后討論每個人怎樣才是盡量多或盡量少,將題目要問的那個人設為x。根據(jù)幾個人的和是定值來列方程解方程,注意如果解出來是小數(shù)的話要討論是舍還是入。一般題目要求這個人最多是多少就舍,要求這個人最少是多少就入。

文章搜索
在線名師 1 2 3 4
華圖公務員考試研究中心申論教研室主任,法學博士,中國社會科學院青年學者。長期從事公務員...詳細
公務員考試欄目導航
版權聲明:如果公務員考試網(wǎng)所轉載內(nèi)容不慎侵犯了您的權益,請與我們聯(lián)系800@exam8.com,我們將會及時處理。如轉載本公務員考試網(wǎng)內(nèi)容,請注明出處。