在備考和考試的過程中同學(xué)們最關(guān)注自己的答題速度,數(shù)字特征法恰恰可以滿足速度的需求,而數(shù)字特征法的“因子特性”又堪稱數(shù)學(xué)運算的“速度直通車”,不僅可以進行快速秒殺,而且適用范圍非常廣。
一、“因子特性法”的含義
“因子特性法”即利用式子中是否包含某些特定因子來進行答案的排除及選擇的一種方法,其應(yīng)用的核心在于“見到乘法想因子”。包含兩種情況:
“若等式一邊包含某個因子,則等式另一邊必然包括該因子。
”若等式一邊不包含某個因子,則等式另一邊也必然不包括該因子。
同時,所選“因子”需同時具備如下性質(zhì):
“易區(qū)分性:即因子在選項中具有區(qū)分性。如利用某因子可以排除掉更多選項,則該因子就更具有區(qū)分性。
”易判斷性:即易于判別是否包含該因子。比如判斷是否包含3因子就比判斷是否包含7因子簡單,因此一般情況下3因子比7因子具有更易判斷性。
二、典型例題
【例1】(江蘇2008A-20)五個一位正整數(shù)之和為30,其中兩個數(shù)為1和8,而這五個數(shù)的乘積為2520,則其余三個數(shù)為( )
A.6,6,9 B.4,6,9 C.5,7,9 D.5,8,8
【答案】C。五個數(shù)的乘積為2520,2520包含最明顯的5因子,5因子在該題中既利于判斷,又具有明顯區(qū)分性,排除A和B;同時,2520包含有3因子,因此排除D,答案選C。
【例2】(北京社招2005-13)某劇院有25排座位,后一排比前一排多2個座位,最后一排有70個座位。這個劇院共有多少個座位?( )
A.1104 B.1150 C.1170 D.1280
【答案】B。該題是明顯的等差數(shù)列求和。利用求和公式:總數(shù)=項數(shù)×中位數(shù)=25×中位數(shù);雖然中位數(shù)不知道,但出現(xiàn)乘積形式,見到乘積想因子,因此總數(shù)應(yīng)該有25因子,即可以被25整除,選項中只有B可以被25整除,因此選B
【例3】(江蘇2009-74)有一隊士兵排成若干層的中空方針,外層共有68人,中間一層共有44人,該方陣的總?cè)藬?shù)是( )
A.296 B.308 C.324 D.348
【答案】B。方陣外層人數(shù)和相鄰層人數(shù)差8,是公差為8的等差數(shù)列。利用求和公式:總數(shù)=層數(shù)×中位數(shù)=層數(shù)×44;雖然層數(shù)未知,但出現(xiàn)乘積形式,見到乘積想因子,因此總數(shù)應(yīng)該有4因子和11因子。但利用4因子不能進行有效的排除選項,缺乏區(qū)分性。因此利用11因子進行判別。選項中只有B可以被11整除,因此選B
例1-例3中,利用常規(guī)方法也可容易求出答案,很多同學(xué)也傾向于直接解。但速度明顯不如利用“因子特性”快速便捷。同學(xué)們處理這類問題時應(yīng)刻意鍛煉“因子特性”思維。
國家 | 北京 | 天津 | 上海 | 江蘇 |
安徽 | 浙江 | 山東 | 江西 | 福建 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內(nèi)蒙古 |