競賽專題講座18
-類比、歸納、猜想
數(shù)學解題與數(shù)學發(fā)現(xiàn)一樣,通常都是在通過類比、歸納等探測性方法進行探測的基礎(chǔ)上,獲得對有關(guān)問題的結(jié)論或解決方法的猜想,然后再設(shè)法證明或否定猜想,進而達到解決問題的目的.類比、歸納是獲得猜想的兩個重要的方法.
所謂類比,就是由兩個對象的某些相同或相似的性質(zhì),推斷它們在其他性質(zhì)上也有可能相同或相似的一種推理形式。類比是一種主觀的不充分的似真推理,因此,要確認其猜想的正確性,還須經(jīng)過嚴格的邏輯論證.
運用類比法解決問題,其基本過程可用框圖表示如下:
可見,運用類比法的關(guān)鍵是尋找一個合適的類比對象.按尋找類比對象的角度不同,類比法常分為以下三個類型.
(1)降維類比
將三維空間的對象降到二維(或一維)空間中的對象,此種類比方法即為降維類比.
【例1】如圖,過四面體V-ABC的底面上任一點O分別作OA1∥VA,OB1∥VB,OC1∥VC, A1,B1,C1分別是所作直線與側(cè)面交點.
求證: + + 為定值.
分析 考慮平面上的類似命題:“過△ABC(底)邊 AB上任一點O分別作OA1∥AC,OB1∥BC,分別交BC、AC于A1、B1,求證 + 為定值”.這一命題利用相似三角形性質(zhì)很容易推出其為定值1.另外,過A、O分別作BC垂線,過B、O分別作AC垂線,則用面積法也不難證明定值為1.于是類比到空間圍形,也可用兩種方法 證明 其定值為1.
證明:如圖,設(shè)平面OA1 VA∩BC=M,平面OB1 VB∩AC=N,平面OC1 VC∩AB=L,則有△MOA1∽△MAV,△NOB1∽△NBV,△LOC1 ∽△ LCV.得
+ + = + + 。
在底面△ABC中,由于AM、BN、CL交于一點O,用面積法易證得:
+ + =1。
∴ + + =1。
【例2】以棱長為1的正四面體的各棱為直徑作球,S是所作六個球的交集.證明S中沒有一對點的距離大于 .
【分析】考慮平面上的類比命題:“邊長為1的正三角形,以各邊為直徑作圓,S‘是所作三個圓的交集”,通過探索S’的類似性質(zhì),以尋求本題的論證思路.如圖,易知S‘包含于以正三角形重心為圓心,以 為半徑的圓內(nèi).因此S’內(nèi)任意兩點的距離不大于 .以此方法即可獲得解本題的思路.
證明:如圖,正四面體 ABCD中,M、N分別為BC、AD的中點,G為△BCD的中心,MN∩AG=O.顯然O是正四面體ABCD的中心.易知OG= ·AG= ,并且可以推得以O(shè)為球心、OG為半徑的球內(nèi)任意兩點間的距離不大于 ,其球O必包含S.現(xiàn)證明如下.
根據(jù)對稱性,不妨考察空間區(qū)域四面體OMCG.設(shè)P為四面體OMCG內(nèi)任一點,且P不在球O內(nèi),現(xiàn)證P亦不在S內(nèi).
若球O交OC于T點。△TON中,ON= ,OT= ,cos∠TON=cos(π-∠TOM)=- 。由余弦定理:
TN2=ON2+OT2+2ON·OT· = ,∴TN= 。
又在 Rt△AGD中,N是AD的中點,∴GN= 。由GN= NT= , OG=OT, ON=ON,得 △GON≌△TON!唷蟃ON=∠GON,且均為鈍角.
于是顯然在△GOC內(nèi),不屬于球O的任何點P,均有∠PON>∠TON,即有PN>TN= ,P點在 N為球心,AD為直徑的球外,P點不屬于區(qū)域S.
由此可見,球O包含六個球的交集S,即S中不存在兩點,使其距離大于 .
(2)結(jié)構(gòu)類比
某些待解決的問題沒有現(xiàn)成的類比物,但可通過觀察,憑借結(jié)構(gòu)上的相似性等尋找類比問題,然后可通過適當?shù)拇鷵Q,將原問題轉(zhuǎn)化為類比問題來解決.
【例3】任給7個實數(shù)xk(k=1,2,…,7).證明其中有兩個數(shù)xi,xj,滿足不等式0≤ ≤ ·
【分析】若任給7個實數(shù)中有某兩個相等,結(jié)論顯然成立.若7個實數(shù)互不相等,則難以下手.但仔細觀察可發(fā)現(xiàn): 與兩角差的正切公式在結(jié)構(gòu)上極為相似,故可選后者為類比物,并通過適當?shù)拇鷵Q將其轉(zhuǎn)化為類比問題.作代換:xk=tgαk(k =l,2,…,7),證明必存在αi,αj,滿足不等式0≤tg(αi-αj)≤ ·
證明:令xk=tgαk(k =l,2,…,7),αk∈(- , ),則原命題轉(zhuǎn)化為:證明存在兩個實數(shù)αi,αj∈(- , ),滿足0≤tg(αi-αj)≤ ·
由抽屜原則知,αk中必有 4個在[0, )中或在(- ,0)中,不妨設(shè)有4個在[0, )中.注意到tg0=0,tg = ,而在[0, )內(nèi),tgx是增函數(shù),故只需證明存在αi,αj,使0<αi-αj < 即可。為此將[0, )分成三個小區(qū)間:[0, ]、( , ]、( , )。又由抽屜原則知,4個αk中至少有2個比如αi,αj同屬于某一區(qū)間,不妨設(shè)αi>αj,則0≤αi-αj ≤ ,故0≤tg(αi-αj)≤ ·這樣,與相應(yīng)的xi=tgαi、xj=tgαj,便有0≤ ≤ ·
相關(guān)推薦:·2021中考語文閱讀理解最全的33套答題公式 (2020-11-10 17:20:05)
·2020中考生物知識點結(jié)構(gòu)圖分類整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知識點結(jié)構(gòu)圖分類整理:生物技術(shù) (2019-11-8 14:53:20)
·2020中考生物知識點結(jié)構(gòu)圖分類整理:生物的多樣性 (2019-11-8 14:50:27)
·2020中考生物知識點結(jié)構(gòu)圖分類整理:生物的生殖發(fā)育與遺 (2019-11-8 14:48:17)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考歷史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語真題及答案已公布
2022年海南中考數(shù)學真題及答案已公布
2022年海南中考語文真題及答案已公布
國家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓 試聽 ·經(jīng)濟師考試培訓 試聽
·執(zhí)業(yè)藥師考試培訓 試聽 ·報關(guān)員考試培訓 試聽
·銀行從業(yè)考試培訓 試聽 ·會計證考試培訓 試聽
·證券從業(yè)考試培訓 試聽 ·華圖公務(wù)員培訓 試聽
·二級建造師考試培訓 試聽 ·公務(wù)員培訓 網(wǎng)校 試聽
·一級建造師考試培訓 試聽 ·結(jié)構(gòu)師考試培訓 試聽
·注冊建筑師考試培訓 試聽 ·造價師考試培訓 試聽
·質(zhì)量資格考試培訓 試聽 ·咨詢師考試培訓 試聽
·衛(wèi)生職稱考試培訓 試聽 ·監(jiān)理師考試培訓 試聽
·報關(guān)員考試培訓 試聽 ·經(jīng)濟師考試培訓 試聽
·銀行從業(yè)考試培訓 試聽 ·會計證考試培訓 試聽
·證券從業(yè)考試培訓 試聽 ·注冊會計師培訓 試聽
·期貨從業(yè)考試培訓 試聽 ·統(tǒng)計師考試培訓 試聽
·國際商務(wù)師考試培訓 試聽 ·稅務(wù)師考試培訓 試聽
·人力資源師考試培訓 試聽 ·評估師考試培訓 試聽
·管理咨詢師考試培訓 試聽 ·審計師考試培訓 試聽
·報檢員考試培訓 試聽 ·高級會計師考試培訓 試聽
·外銷員考試培訓 試聽 ·公務(wù)員 試聽 教育門戶
·二級建造師考試培訓 試聽 ·招標師考試培訓 試聽
·造價師考試培訓 試聽 ·物業(yè)管理師考試培訓 試聽
·監(jiān)理師考試培訓 試聽 ·設(shè)備監(jiān)理師考試培訓 試聽
·安全師考試培訓 試聽 ·巖土工程師考試培訓 試聽
·咨詢師考試培訓 試聽 ·投資項目管理師培訓 試聽
·結(jié)構(gòu)師考試培訓 試聽 ·公路監(jiān)理師考試培訓 試聽
·建筑師考試培訓 試聽 ·衛(wèi)生資格考試培訓 試聽
·質(zhì)量資格考試培訓 試聽 ·執(zhí)業(yè)藥師考試培訓 試聽
·造價員考試培訓 試聽 ·執(zhí)業(yè)醫(yī)師考試培訓 試聽