2011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座(13)
競(jìng)賽講座13
-平面三角
三角函數(shù)與反三角函數(shù),是五種基本初等函數(shù)中的兩種,在現(xiàn)代科學(xué)的很多領(lǐng)域中有著廣泛的應(yīng)用.同時(shí)它也是高考、數(shù)學(xué)競(jìng)賽中的必考內(nèi)容之一.
一、三角函數(shù)的性質(zhì)及應(yīng)用
三角函數(shù)的性質(zhì)大體包括:定義域、值域、奇偶性、周期性、單調(diào)性、最值等.這里以單調(diào)性為最難.它們?cè)谄矫鎺缀巍⒘Ⅲw幾何、解析幾何、復(fù)數(shù)等分支中均有廣泛的應(yīng)用.
【例1】 求函數(shù)y=2sin( -2x)的單調(diào)增區(qū)間。
解:y=2sin( -2x)= 2sin(2x+ )。
由2kπ- ≤2x+ ≤2kπ+ ,k∈Z,
得kπ- ≤x≤kπ- ,k∈Z。
即原函數(shù)的單調(diào)增區(qū)間為:[kπ- ,kπ- ](k∈Z)。
【例2】 若φ∈(0, ),比較sin(cosφ),cos(sinφ),cosφ這三者之間的大小。
解:∵在(0, )中,sinx ∵在(0, )中,y=cosx單調(diào)遞減,∴cosφ< cos(sinφ)。 ∴sin(cosφ)< cosφ< cos(sinφ)。 【例3】 已知x,y∈[- , ],a∈R,且 。求cos(x+2y)的值。 解:原方程組化為 。 ∵x,-2y∈[- , ],函數(shù)f(t)=t3+sint在[- , ]上單調(diào)遞增,且f(x)=f(-2y) ∴x=2y,∴cos(x+2y)=1。 【例4】 求證:在區(qū)間(0, )內(nèi)存在唯一的兩個(gè)數(shù)c、d(c 證明:考慮函數(shù)f(x)=cos(sinx)-x,在區(qū)間[0, ]內(nèi)是單調(diào)遞減的,并且連續(xù),由于f(0)=cos(sin0)-0=1>0,f( )=cos(sin )- = cos 1- <0, ∴存在唯一的d∈(0, ),使f(d)=0,即cos(sind)= d. 對(duì)上式兩邊取正弦,并令c=sind,有sin(cos(sind))=sin d,sin(cosc)=c。 顯然c∈(0, )。且由y=sinx在(0, )上的單調(diào)性和d的唯一性,知c也唯一。 故存在唯一的c 【例5】 α、β、γ∈(0, ),且ctgα=α,sin(ctgβ)=β,ctg(sinγ)=γ。比較α、β、γ的大小。 解:∵α、β、γ∈(0, ),∴ctgβ>0,0< sinγ<γ< 。 ∴β=sin(ctgβ)< ctgβ,γ=ctg(sinγ)> ctgγ。 作出函數(shù)y=ctgx在(0, )上的圖象,可看出:β<α<γ。 【例6】 n∈N,n≥2,求證:cos ·cos · ··· ·cos > 。 證明:∵0< < <···< < <1, ∴0 ∴(cos ·cos · ··· ·cos )2>( · )·( · )·( · )···( · ) = · > >( )2, ∴cos ·cos · ··· ·cos > 。
·2021中考語(yǔ)文閱讀理解最全的33套答題公式 (2020-11-10 17:20:05)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物技術(shù) (2019-11-8 14:53:20)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的多樣性 (2019-11-8 14:50:27)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的生殖發(fā)育與遺 (2019-11-8 14:48:17)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_(kāi)通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_(kāi)
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022年福建廈門中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng) ·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·華圖公務(wù)員培訓(xùn) 試聽(tīng)
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽(tīng)
·一級(jí)建造師考試培訓(xùn) 試聽(tīng) ·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng)
·注冊(cè)建筑師考試培訓(xùn) 試聽(tīng) ·造價(jià)師考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·咨詢師考試培訓(xùn) 試聽(tīng)
·衛(wèi)生職稱考試培訓(xùn) 試聽(tīng) ·監(jiān)理師考試培訓(xùn) 試聽(tīng)
·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽(tīng)
·期貨從業(yè)考試培訓(xùn) 試聽(tīng) ·統(tǒng)計(jì)師考試培訓(xùn) 試聽(tīng)
·國(guó)際商務(wù)師考試培訓(xùn) 試聽(tīng) ·稅務(wù)師考試培訓(xùn) 試聽(tīng)
·人力資源師考試培訓(xùn) 試聽(tīng) ·評(píng)估師考試培訓(xùn) 試聽(tīng)
·管理咨詢師考試培訓(xùn) 試聽(tīng) ·審計(jì)師考試培訓(xùn) 試聽(tīng)
·報(bào)檢員考試培訓(xùn) 試聽(tīng) ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽(tīng)
·外銷員考試培訓(xùn) 試聽(tīng) ·公務(wù)員 試聽(tīng) 教育門戶
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·招標(biāo)師考試培訓(xùn) 試聽(tīng)
·造價(jià)師考試培訓(xùn) 試聽(tīng) ·物業(yè)管理師考試培訓(xùn) 試聽(tīng)
·監(jiān)理師考試培訓(xùn) 試聽(tīng) ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽(tīng)
·安全師考試培訓(xùn) 試聽(tīng) ·巖土工程師考試培訓(xùn) 試聽(tīng)
·咨詢師考試培訓(xùn) 試聽(tīng) ·投資項(xiàng)目管理師培訓(xùn) 試聽(tīng)
·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng) ·公路監(jiān)理師考試培訓(xùn) 試聽(tīng)
·建筑師考試培訓(xùn) 試聽(tīng) ·衛(wèi)生資格考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng)
·造價(jià)員考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng)